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1 Introduction 
Various kinds of network optimization problems appear in many fields of work, including telecommunication 
systems, commodity transportation, railroad and highway traffic planning, electrical power distribution, and 
much more. The fundamental question in network optimization is how to efficiently transport some entity (data 
packets, electrical power, vehicles, etc.) from one point to another in a network, given a number of limiting 
constraints, such as the capacity of the communication links of the network. General optimization problems can 
be approached in many different ways, e.g. using linear programming, operations research theory, discrete 
simulation, and using algorithmic approaches from the computer science field. This overview introduces some of 
the fundamental concepts, algorithms and applications of network optimization theory, using a computer science 
perspective. The focus is on computer networks, but the theories and algorithms discussed are applicable also in 
other domains. 

2 Network optimization problems 
Many of the most important network optimization problems can be related to the following general problems: 

 
• Shortest path problems 

How can we get from one point to another in a network using the shortest (or cheapest) path? 
• Maximum flow problems 

How can we achieve as high flows as possible between two points in a network, given some link 
capacity restrictions? 

• Minimum cost flow problems 
Given a cost per unit flow on each link in a network, how can we assign flows to the links in the most 
cost effective way? 

 
A large number of related problems can be derived from the above-mentioned general problems, including 

assignment problems, transportation problems, circulation problems, convex cost flow problems, multi-
commodity flow problems, minimum spanning tree problems, and matching problems. 

It can be shown that virtually all network flow problems can be transformed into one another. Hence, a 
solution to one of the problems is a solution to all others, using a suitable transform. Specifically, the shortest 
path problem and the maximum flow problem can easily be stated as special cases of the minimum cost flow 
problem (MCFP). Therefore, the MCFP is considered the most fundamental network flow problem, and the 
design of algorithms for network flow problems are mainly targeting the MCFP. 

2.1 Formulation of the minimum cost flow problem 
Let (N, A) be a directed graph defined by a set N of n nodes and a set A of m directed arcs. Each arc (i, j) in A has 
an associated cost cij denoting the cost per unit flow on that arc. The upper and lower bounds on the flow that can 
be supported by each link (arc) is denoted by lij and uij respectively. The supply/demand of node i in the network 
is denoted by b(i). The MCFP can then be stated mathematically as follows: 
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The variable xij represents the flow on arc (i, j)∈A. 

3 Some basic concepts and terminology 
Strong connectivity: A network is strongly connected if for every pair of nodes i and j the network contains a 
directed path from node i to node j. 

 



Topological ordering: A labeling of the nodes of a directed graph (with monotonically increasing integers) is a 
topological ordering of nodes if every arc joins a lower-labeled node to a higher-labeled node. A network that 
contains a directed cycle has no topological ordering. 

 
Cut: A cut is a set of arcs of a graph that partitions the graph into two parts. 

 
Tree: A tree is a connected graph that contains no cycle. 

 
Forest: A forest is a graph that contains no cycle (i.e. it is a set of trees). 

 
Residual network: The "remaining flow network" representing the feasible incremental flows that remain at an 
intermediate step of an iterative algorithm. 

4 Algorithm development and analysis 
The goal when designing network optimization algorithms is to arrive at an algorithm that solves the 
optimization problem in an efficient way, i.e. in polynomial time. Several approaches exists: 

 
• Geometric improvement techniques 

An algorithm runs in polynomial time if at every iteration it makes an improvement in the objective 
function value that is proportional to the difference between the objective function values of the current 
(intermediary) solution and the optimal solution. That is, if the algorithm makes a significant 
contribution to the solution for each iteration, it will be efficient. 

• Dynamic programming 
The dynamic programming strategy decomposes the problem into stages and uses a recursive 
relationship to go from one stage to another. 

• Scaling 
The scaling approach solves a sequence of simpler approximate versions of a given problem, deter-
mined by scaling the problem data (for instance using bit scaling by increasing the precision one bit) in 
such a way that the approximations gradually approach the solution of the final problem. 

 
A common trait of most algorithm design techniques for network optimization is an iterative divide-and-conquer 
approach that somehow seeks to gradually approach the final solution by solving smaller intermediary subtasks. 
 
The efficiency of network optimization algorithms is usually measured using big O, big Ω, and big Θ  notation: 
 

• An algorithm is said to execute in O(f(n)) time if for some numbers c and n0 the time taken by the 
algorithm is at most cf(n) for all n ≥ n0. 

 
• An algorithm is said to execute in Ω(f(n)) time if for some numbers k and n0 the time taken by the 

algorithm on some problem instance is at least kf(n) for all n ≥ n0. 
 

• An algorithm is said to be Θ(f(n)) if the algorithm is both O(f(n)) and Ω(f(n)). 
 

Thus, O is an upper bound on algorithm complexity, Ω is a lower bound, and Θ is both an upper and a lower 
bound. 

5 Shortest path problems 
Shortest path problems arise frequently in many applications. In computer networks, routing algorithms rely 
heavily on shortest path computations. There are a number of variations of the shortest path problem, the most 
common (in computer networking at least) being the question of how to find the shortest path from one node to 
all other nodes in a network (the single-source shortest path problem with nonnegative arc lengths). 

The shortest path problem can be formulated as a minimum cost flow problem by modifying b(i) in 
equation (1) so that b(s) = n – 1, for the source node s, and b(i) = -1 for all other nodes in the network. 

Shortest path algorithms can be classified into two classes: label-setting algorithms and label-correcting 
algorithms. Both progress iteratively assigning labels to nodes. The label of a node represents the upper bound 
on the shortest path from the source to the node. Label-setting algorithms designate one label as permanent (i.e. 
optimal) for each iteration of the algorithm, whereas label-correcting algorithms assign temporal labels that 
become permanent at the last step of the algorithm. 



Label-setting algorithms are only applicable for acyclic networks with arbitrary arc length and for networks 
with nonnegative arc lengths. Label-correcting algorithms work for all types of networks. Since computer 
networks generally have nonnegative link costs, label-setting algorithms are typically preferred, since the 
complexity of label-correcting algorithms is higher. (Label-correcting algorithms are NP-complete.) 

5.1 Dijkstra's algorithm 
Dijkstra's algorithm is a label-setting algorithm that finds the shortest path from a source node to all other nodes 
in a network with nonnegative arc lengths. It does so by maintaining two lists: the list of permanently labeled 
nodes (the permanent list) and the list of temporarily labeled nodes (the temporary list). The labels represent the 
distance to the source node. For each iteration of the algorithm, one node is transferred from the temporary list to 
the permanent list. Initially all nodes are in the temporary list, with distance labels set to infinity for all nodes but 
the source which has a distance label of zero. Consequently, the permanent list is initially empty. For each 
iteration the node with the smallest distance label is transferred from the temporary list to the permanent list. 
Hence, the first node to be transferred is the source node having a zero distance label. Then, for each iteration, 
each node j adjacent to the node i being transferred to the permanent list, is investigated to see if its distance 
label d(j) is greater than d(i) + cij, where cij is the cost of arc (i, j). If so, d(j) is set to d(i) + ci and the shortest path 
from the source to node j is recorded as the path through node i. The algorithm iterates until all nodes have been 
transferred to the permanent list. Upon termination, the tree formed by the arcs recorded when updating the 
distance labels of the nodes will be a shortest path tree. 

The heart of the algorithm is the observation that for each iteration of the algorithm, one node can always be 
transferred to the permanent list, that is, its optimal shortest path from the source can be found. This observation 
relies on the fact that since we always choose the node with the lowest distance label in the temporary list, there 
cannot be another node in the temporary list through which a shorter path from the source can be constructed 
compared to some path constructed only through nodes in the permanent list. If that was the case, that node 
should already have been transferred to the permanent list. 

5.1.1 Complexity of Dijkstra's algorithm 
The complexity of the most straightforward implementation of Dijkstra's algorithm is O(n2), since each node 
selection operation requires the temporary list to be scanned, and the node selection operation is performed n 
times. The distance update operation is performed m times, with each update operation requiring constant time. 
Each node can have at most n – 1 adjacent nodes, so m < n2 and thus O(m) < O(n2). 

The performance of the algorithm can easily be improved by maintaining a sorted temporary list. For 
instance, using a binary heap data structure the complexity can be reduced to O(m log n). 

6 Maximum flow 
The maximum flow problem is concerned with finding the maximum flow between a source node and a sink 
node, without exceeding the arc capacities of the network. The shortest path problem and the maximum flow 
problem are complementary and capture different aspects of the minimum cost flow problem: The shortest path 
problem involves arc costs but not arc capacities, whereas the maximum flow problem involves arc capacities 
but not arc costs. The maximum flow problem can be stated formally as follows: 

Let (N, A) be a network with nonnegative arc capacities uij associated with each arc (i, j)∈A. Let s be a source 
node and t a sink node. Then the maximum flow problem is: 
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0 ≤ xij ≤ uij  for each (i, j)∈A. 

6.1 The augmenting path algorithm 
A directed path from the source to the sink in the residual network is called an augmenting path. The residual 
capacity of an augmenting path is the minimum residual capacity of the arcs in the path. Whenever a network 
contains an augmenting path it is possible to send additional flow from the source to the sink. The augmenting 
path algorithm exploits this observation by identifying augmenting paths and augmenting flows on these paths 
until there is no more augmenting paths in the network. 

 v for i = s 
 0 for all i∈N – {s and t}
-v for i = t



The augmenting path algorithm operates on the residual network. The residual network is a virtual network 
formed by replacing the arcs of the original network with arcs representing the residual capacity, that is the arc 
(i, j) with capacity uij carrying a flow xij ≤ uij is replaced by an arc (i, j) with residual capacity uij – xij and an arc 
(j, i) with capacity xij. The arc (j, i) in the residual network represents the amount of flow that can be reduced 
between i and j by reducing the flow xij on arc (i, j) in the original network. 

6.1.1 The labeling algorithm 
The most straightforward implementation of the augmenting path algorithm is the labeling algorithm. The 
labeling algorithm fans out from the source node to its adjacent nodes (in the residual network), labeling nodes 
as they are reached and recording the path they are reached through. For each iteration the algorithm has 
partitioned the nodes of the network into two groups: the labeled nodes and the unlabeled nodes. The labeled 
nodes are those that the algorithm has reach so far, and hence there exists a directed path from the source to each 
labeled node in the residual network. The algorithm iteratively selects a labeled node, fans out to its adjacent 
nodes labeling more nodes and so on. Eventually the sink node will be labeled. Then a maximum flow is 
augmented on the augmenting path, whereupon all the labels are erased and the algorithm repeats the procedure 
on the new residual network. The algorithm terminates when it has scanned all labeled nodes and the sink is still 
unlabeled. This implies that there is no longer a path from the source to the sink in the residual network. 

It can be showed that the flow found by the labeling algorithm is a maximum flow. (The flow equals the 
capacity of the cut between the labeled nodes and the unlabeled nodes. Since the value of any flow is less than or 
equal to the capacity of any cut in the network, the flow must be a maximum flow, and the cut is a minimum 
cut.) 

The labeling algorithm performs one augmentation per iteration. Each augmentation involves at most m arcs, 
so the complexity of the augmentation process is O(m). The number of iterations performed depends on the arc 
capacities and the amount of flow that is augmented for each iteration. If the arc capacities are bounded above by 
U, the capacity of the cut (s, N – {s}) is at most nU. Therefore, the maximum flow value is bounded by nU. The 
algorithm increases the value of the augmenting flow with at least one unit for each iteration, so the algorithm 
will terminate within nU iterations. Consequently, the complexity of the labeling algorithm is O(nmU). 

 

6.2 The max-flow min-cut theorem 
One of the most fundamental theorems of network flow theory is the max-flow min-cut theorem, which 
establishes the following intuitive property: 

 
The maximum value of the flow from a source node s to a sink node t in a capacitated network equals the 
minimum capacity among all s-t cuts. 

 
A corollary of the max-flow min-cut theorem is the augmenting path theorem, stating the following: 
 
 A flow x is a maximum flow if and only if the residual network G(x) contains no augmenting path. 
 
The max-flow min-cut theorem tells us that by solving a maximum flow problem we also solve a 

complementary minimum cut problem (and vice versa). Finding the maximum flow between two nodes in the 
network is conceptually equivalent to finding the cut, among all cuts in the network separating the source and 
sink nodes, that has the least capacity. In fact, the max-flow min-cut theorem is a special case of the well-known 
strong duality theorem of linear programming. 

 

6.3 Polynomial maximum flow algorithms 
A problem with the labeling algorithm is that the complexity, O(nmU), get prohibitively high if the arc capacities 
(U) are high. The example depicted in Figure 1 illustrates the problem. In the network of Figure 1, a is the source 
node and d is the destination node. The algorithm first augments a flow of one unit along the path a-c-b-d. Next, 
the algorithm augments a unit flow along the path a-b-c-d. Then the algorithm can choose to augment along the 
a-c-b-d path again, and then alternating between the two paths 100 times, augmenting a unit flow for each 
iteration. Clearly, a worst case scenario like this is a major drawback of the algorithm. (Replace 100 with an 
arbitrarily large capacity to make the example more dramatic.) 

 
 

 



 
 
 
 

 
 
 

Figure 1  Example network illustrating shortcomings of the labeling algorithm 
 

To avoid the performance problems that can arise with the labeling algorithm, more clever augmenting path 
algorithms have been devised. The capacity scaling algorithm solves the maximum flow problem in O(m log U) 
time, by requiring the flow that is augmented for each iteration to be "sufficiently large," in the style of the 
geometric improvement techniques, discussed in section 4. 

The shortest augmenting path algorithm further reduces the complexity by always augmenting flow along a 
shortest path from the source to the sink in the residual network. The complexity of the shortest augmenting path 
algorithm is O(n2m). 

7 Minimum cost flow algorithms 
The minimum cost flow problem, which we stated formally in section 2.1, is a generalization of the shortest path 
and maximum flow problems. Many of the algorithms developed for the minimum cost flow problem combine 
techniques from both shortest path and maximum flow algorithms. Since the MCFP considers both arc capacities 
and arc costs it is harder to solve than the shortest path and maximum flow problems. 

7.1 The cycle-canceling algorithm 
One of the simplest algorithms for solving the MCFP is the cycle-canceling algorithm, which relies on the 
observation that a feasible solution to the MCFP is an optimal solution if and only if the residual network 
contains no negative cost (directed) cycle. This is true since if there is a negative cost cycle, the feasible flow can 
be augmented along the cycle, improving the objective function value and hence the feasible flow is not optimal. 
(The converse can also easily be shown to be true.) 

The cycle-canceling algorithm establishes a feasible flow in the network by solving a maximum flow 
problem. Then it iteratively identifies negative cost cycles in the residual network, augmenting flow on these 
cycles until no more negative cost cycles exist. When the algorithm terminates, the feasible flow will be the 
minimum cost flow. 

The complexity of the basic cycle-canceling algorithm is O(nm2CU), where C and U are upper bounds on the 
arc costs and capacities respectively. (Identifying negative cost cycles can be done in O(nm) time, and mCU is 
the worst case number of iterations, since it is an upper bound on the initial flow cost and the objective function 
is changed by a negative amount for each iteration.) 

By augmenting flow in the negative cost cycle with maximum improvement – or, alternatively, to augment 
flow along the negative cost cycle with minimum mean cost – the complexity of the cycle canceling algorithm 
can be improved to polynomial time. 

7.2 The successive shortest path algorithm 
Contrary to the cycle-canceling algorithm which maintains a feasible flow for each iteration and attempts to 
achieve optimality, the successive shortest path algorithm maintains an optimal flow for each step and strives for 
feasibility. The flow satisfies the nonnegativity and capacity constraints, but violates the mass balance 
constraints of the nodes (i.e. that the sum of the supply and demand for each node is zero). For each iteration the 
algorithm selects a node with excess supply and a node with unfulfilled demand and augments a flow between 
these two nodes along a "shortest path" in the residual network. The shortest path is computed using Dijkstra's 
algorithm with respect to the reduced costs of the arcs of the path. The reduced cost cij of path (i, j) with respect 
to a set of node potentials π is defined as ).()( jicc ijij π+π−=π  The node potential π(i) of node i is a real 
number used in much the same way as the distance labels that are used in the shortest path label-setting and 
label-correcting algorithms. The successive shortest path algorithm terminates when the flow satisfies all the 
mass balance constraints, and consequently the flow is a feasible (and optimal) solution. 

7.3 The primal-dual algorithm and the out-of-kilter algorithm 
The primal-dual algorithm is similar to the successive shortest path algorithm in the sense that it maintains a 
flow satisfying the reduced cost optimality condition for each iteration, and turns this flow into a feasible flow by 
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augmenting flows along shortest paths in the residual network. Unlike the successive shortest path algorithm the 
flow augmentations are performed along all shortest paths solving a maximum flow problem. 

The out-of-kilter algorithm maintains a solution that satisfies only the mass balance constraints for each 
iteration, and modifies flows and potentials in a way that moves the solution closer to the optimal flow. Thus, the 
intermediary solutions might violate both the optimality criteria and the flow bound restrictions. The out-of-kilter 
algorithm is similar to the successive shortest path and the primal-dual algorithms in that every iteration solves a 
shortest path problem, augmenting flows on shortest paths. 

The successive shortest path, the primal-dual and the out-of-kilter algorithms are all pseudopolynomial 
(polynomial in n and m and also polynomially dependent on the arc cost/capacity bounds). 

7.4 Polynomial minimum cost flow algorithms 
A problem with the successive shortest path algorithm is that the flow being augmented between two nodes can 
be small, thereby requiring a large number of iterations in the worst case. In the same way that the capacity 
scaling algorithm improves the labeling algorithm for the maximum flow problem by requiring each flow 
augmentation to be sufficiently large, the capacity scaling algorithm for the minimum cost flow problem 
enhances the successive shortest path algorithm. By requiring the flow augmentations to be sufficiently large the 
number of iterations is reduced, improving the running time of the algorithm. 

For each iteration of the capacity scaling algorithm, the augmentation between an excess and a deficit node is 
required to be of the magnitude ∆. If no node has an excess of at least ∆, or no node has a deficit of at least -∆, ∆ 
is reduced by a factor two. Initially ∆ is set to  Ulog2 , where U is an upper bound on arc capacity. When the 
algorithm terminates ∆ = 1, and the optimal flow has been found. This geometric improvement technique 
reduces the complexity of the successive shortest path algorithm from O(nU ⋅ S(n, m, nC)) to O(m log U ⋅ S(n, m, 
nC)), where S(n, m, nC) is the time required to solve a shortest path problem with n nodes, m arcs, and arc costs 
bounded by C. 

A number of strictly polynomial algorithms (i.e. only dependent on n and m) for the minimum cost flow 
problem have been discovered, including the minimum mean cycle-canceling algorithm and the repeated 
capacity scaling algorithm. The most efficient known algorithm for the minimum cost flow problem is the 
enhanced capacity scaling algorithm which has a complexity of O((m log n)(m + n log n)). 

8 Network optimization and linear programming 
Linear programming is a powerful approach to any optimization problem with a linear objective function and 
linear constraints. In essence, linear programming solves an optimization problem by solving a system of linear 
equations. The most pervasive and powerful method for solving linear programming problems is the simplex 
method.  

Since the minimum cost flow problem can be stated as a linear programming problem, the simplex method 
can be used to solve shortest path, maximum flow, and minimum cost flow problems. However, because of the 
special structure of network flow problems, the general simplex method without modifications to exploit the 
underlying network structure of the problem is not a competitive approach, compared to the algorithms discussed 
previously. The matrix representing the linear equations derived from the mass balance equations and the 
network structure is simply too sparse to make a brute force general linear programming solution efficient. 
Fortunately, however, by modifying the simplex algorithm to take advantage of the networks structure a very 
efficient algorithm, called the network simplex algorithm, can be designed. In practical applications, the network 
simplex algorithm is one of the most commonly used tools to solve network flow optimization problems. 

Many of the theoretic results of network flow theory have their counterparts in linear programming theory. 
For instance, the max-flow min-cut theorem is a special case of the strong duality theorem, which states that any 
linear minimization problem can be formulated as an equivalent maximization problem and vice versa. 

The minimum cost flow problem can be stated as a linear program as follows: 
 

Minimize  cx 

subject to 

Nx = b, 

0 ≤ x ≤ u. 

Here, N is an m x n matrix called the node-arc incidence matrix and the linear equation system Nx = b is the 
mass balance equations, representing the inflow and outflow of each node in the network. 



9 Minimum spanning trees 
A spanning tree T of an undirected graph G is a connected acyclic subgraph of G that spans all the nodes of G. If 
G has n nodes, every spanning tree of G has n – 1 arcs. If each arc of G has an associated cost (or length) the 
minimum spanning tree of G is the spanning tree that has the smallest total cost of its constituent arcs. 

Minimum spanning tree problems are very similar to the shortest path problem. The main difference is that 
for minimum spanning tree problems, the arcs are undirected. 

9.1 Kruskal's algorithm 
A simple polynomial time algorithm for the minimum spanning tree problem is Kruskal's algorithm, which 
builds a minimum spanning tree by adding arcs to the tree one at a time. First, all arcs are sorted in non-
decreasing order of their costs. A list that is initially empty defines the set of arcs that will eventually constitute 
the spanning tree. For each iteration, the arc with the lowest cost is added to the spanning tree list providing it 
doesn't create a cycle with the arcs already in the list. If the arc considered does create a cycle it is discarded and 
not considered for inclusion in the spanning tree list anymore. When n – 1 arcs have been added to the spanning 
tree list, the algorithm terminates. 

The correctness of the algorithm relies on the key observation that every arc in a minimum spanning tree is a 
minimum cost arc across the cut that is defined by removing it from the tree. (If this was not the case, we could 
substitute an arc violating this property by another arc from the cut with a lower cost, creating a spanning tree 
with lower total cost.) As the algorithm progresses, the spanning tree list will be a forest of minimum spanning 
trees of subgraphs of the full graph. Each time an arc is added to the spanning tree list, it will either connect two 
trees into one, or form a new tree in the forest. Since the arcs are chosen in order of their associated costs, an arc 
connecting two trees will be the smallest cost arc in the cut between the two trees it connects, and thus as trees 
are merged, they will be the minimum spanning tree of the graph made up from the nodes they span. Eventually, 
the minimum spanning tree of the full graph will be found. 

The complexity of Kruskal's algorithm is clearly polynomial, since the sorting of the arcs can be carried out 
in O(m log n) time and the cycle detection operation of each iteration of the algorithm, even with a simplistic 
implementation, can be carried out in O(n) time, giving an total complexity of O(nm). (A simple way to detect 
whether the addition of arc (i, j) will create a cycle is to scan each tree of the forest in the spanning tree list to see 
if both node i and node j belong to the same tree. This requires O(n) time.) More efficient implementations of 
Kruskal's algorithm have also been developed. 

9.2 Prim's algorithm 
Prim's algorithm is another simple, yet efficient algorithm for finding minimum spanning trees. It builds a 
spanning tree by fanning out from a node, adding arcs one by one. For each step, the nodes of the graph belong 
either to the subset of nodes S spanned by the nodes that have been reached by the spanning tree so far, or to the 
subset S of nodes that have not yet been reached. The arc from the cut [ S, S ] with the lowest cost is added to 
the spanning tree for each step (implying that the node that is reached by this arc will be added to S). When n – 1 
arcs have been added to the spanning tree (or, equivalently, when the set S is empty), the algorithm terminates. 

Since every arc in a minimum spanning tree is a minimum cost arc across the cut that is defined by removing 
it from the tree, the correctness of the algorithm follows from the fact that at each iteration we add the lowest 
cost arc from the cut [ S, S ]. 

For each of the n – 1 iterations of the algorithm we scan at most m arcs (in a naïve implementation) to find 
the minimum cost arc of the cut [ S, S ]. Thus, the complexity of the algorithm is clearly bounded by O(mn). 
This worst case complexity can be improved by using a cleverly designed data structure for the arcs, so that the 
arc selection process is quicker. For instance, a Fibonacci heap implementation achieves a complexity of 
O(m + n log n).  

 

10 Summary 
Network optimization is concerned with how to efficiently transport some entity from one point to another in a 
network, given a number of limiting constraints, such as the capacities and costs of the communication links of 
the network. We have seen that the minimum cost flow problem is a generalization of the shortest path problem 
and the maximum flow problem, that considers both link capacities and link costs. Since the objective function 
and the capacity and cost constraints are usually (but not always) represented by linear relationships, network 
optimization can be seen as a special case of general discrete linear optimization, and can be solved by linear 
programming. Due to the strong duality theorem of linear programming, any minimization problem can be 
converted into an equivalent maximization problem. In terms of network optimization this result leads to the 



max-flow min cut theorem, which states that finding the maximum flow between two nodes in a network is 
conceptually equivalent to finding the cut, among all cuts in the network separating the source and sink nodes, 
that has the least capacity. 

Efficient (polynomial time) algorithms have been developed for the shortest path problem and the maximum 
flow problem as well as for the more general minimum cost flow problem. Since the shortest path and maximum 
flow problems are simplified specializations of the minimum cost flow problems, shortest path and maximum 
flow algorithms are typically simpler and more efficient than minimum cost flow problems. 

We have explored the minimum spanning tree problem, and presented two efficient and simple algorithms 
with polynomial complexity. 

Applications of network optimization theory are vast, and with the ever increasing proliferation of computer 
networks and other communication systems, it will continually be of tremendous importance. 
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